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SCHEDULED LOAD OF HEADS TO REDUCE
LUBRICANT MIGRATION ON POLE TIP AND
DECREASE TIME TO READY

CROSS REFERENCE TO RELATED
APPLICATION

This U.S. patent application is based on and claims the
benefit of priority under 35 U.S.C. 119 from provisional U.S.
patent application No. 61/809,805, filed on Apr. 8, 2013, the
entire disclosure of which is incorporated by reference herein.

BACKGROUND

Disk drives comprise a disk media and a head connected to
a distal end of an actuator arm which is rotated about a pivot
by avoice coil motor (VCM) to position the head radially over
the disk. The disk comprises a plurality of radially spaced,
concentric tracks for recording user data sectors and embed-
ded servo sectors. The embedded servo sectors comprise head
positioning information (e.g., a track address) which is read
by the head and processed by a VCM servo controller to
control the velocity of the actuator arm as it seeks from track
to track.

FIG. 1 shows a prior art disk format 2 comprising a number
of servo tracks 4 defined by concentric servo sectors 6,-6,,
recorded around the circumference of each servo track,
wherein data tracks are defined relative to the servo tracks 4.
Each servo sector 6, comprises a preamble 8 for storing a
periodic pattern, which allows proper gain adjustment and
timing synchronization of the read signal, and a sync mark 10
for storing a special pattern used to synchronize to a servo
data field 12. The servo data field 12 stores coarse head
positioning information, such as a servo track address, used to
position the head over a target data track during a seek opera-
tion. Each servo sector 6, further comprises groups of servo
bursts 14 (e.g., A, B, C and D bursts), which comprise a
number of consecutive transitions recorded at precise inter-
vals and offsets with respect to a data track centerline. The
groups of servo bursts 14 provide fine head position informa-
tion used for centerline tracking while accessing a data track
during write/read operations.

An air bearing forms between the head and the disk due to
the disk media rotating at high speeds. Since the quality of the
write/read signal depends on the fly height of the head, con-
ventional heads (e.g., a magnetoresistive heads) may com-
prise an actuator for controlling the fly height. Any suitable
fly height actuator may be employed, such as a heater which
controls fly height through thermal expansion, or a piezoelec-
tric (PZT) actuator. A dynamic fly height (DFH) servo con-
troller may measure the fly height of the head and adjust the
fly height actuator to maintain a target fly height during write/
read operations.

In certain circumstances, lubricant on the disk media can
build up on the head, causing high fly writes (HFW) due to
increased head-media spacing (HMS). For example, if the
head is parked on the ramp over an extended period of time
(e.g., over one hour) then the lubricant may migrate from
pooling areas back onto the air bearing system and the pole
tip, which can result in a head-media spacing change that can
cause HFW after initial loading of the heads back onto the
media.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a prior art disk format having a plurality of
servo tracks defined by embedded servo sectors.
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2

FIG. 2A shows a disk drive according to an example
embodiment of the present inventive concept, having a head
actuated over a disk by a servo control system.

FIG. 2B is a flow diagram according to an example
embodiment of the present inventive concept, where a sched-
uled load procedure is performed to remove or shear off the
migrated lubricant from the pole area.

FIG. 3 illustrates a graph of the change in HMS versus the
park time of the head.

FIGS. 4(a) to 4(f) illustrate a graph of the decrease in the
HMS versus time after initial load, in accordance with an
example embodiment.

FIG. 5 illustrates a flow diagram of an example embodi-
ment of the present inventive concept.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

Some example embodiments described herein involve
apparatuses and methods for determining or measuring the
effect of parking the head on the ramp over an extended
period of time, and scheduling a load and unload procedure
for the disk drive to remove or shear off lubricant which may
have migrated from the disk to the pole area of the head.
Removing lubricant from the pole area of the head may result
in decreasing the time-to-ready for the disk drive as well as
preventing HFW. Inthe present application, “a head” and “the
head” are not meant to be limited to one head, but can also be
applied to one or more heads of the HDD, depending on the
desired implementation.

FIG. 2A shows a disk drive according to an example
embodiment of the present inventive concept, having a disk
16, a head 18, and control circuitry 20 including a servo
control system operable to actuate the head 18 over the disk
16. The disk 16 includes embedded servo sectors 32,-32, that
define a plurality of servo tracks 34. The control circuitry 20
executes the flow diagram of FIG. 2B. The operations in FIG.
2B may be implemented, for example, in the hard drive firm-
ware. When the hard disk drive is in operation, the heads are
flying over the lubricated disk. Lubricant may be picked up by
the head and may pool in certain areas on the head. When the
hard drive is not in use, the head is unloaded and parked on the
ramp, wherein lubricant may flow back onto the pole tip area
(22). During this time, the lubricant may migrate from the
pooling area back onto the air bearing slider and the pole area,
which may increase the HMS. As a result of the lubricant
migration, once the head is loaded back onto the disk, HFW
may occur along with other issues, for example, longer time-
to-ready for the disk drive. Thus, in order to eliminate the
Iubricant build up on the pole area of the unloaded head, after
a period of time has elapsed based on a set time constant, the
head is loaded to perform HMS measurements (24). The head
is loaded periodically based on the set time constant to shear
off the excess lubricant from the pole area. HMS measure-
ments are performed until the HMS measurements become
constant based on a desired HMS, which indicates that the
migrated lubricant is cleaned off (26). When the HMS mea-
surements become constant, the head is unloaded and parked
on the ramp (28). The time constant may be adjusted based on
the time taken for the HMS measurements to become constant
(e.g., based on the read signal feedback) (30). Adjustment of
the time constant can thereby allow the control circuitry to
account for changes in environmental conditions (e.g., tem-
perature changes, moisture, etc.), or variations in disk drive
design. Further details are provided in the description of FIG.
5 below.
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In the example embodiment of FIG. 2A, the disk 16 com-
prises embedded servo sectors 32,-32,, that define a plurality
of servo tracks 34. The control circuitry 20 processes HMS
measurements 36 from the head 18 to implement the flow
diagram as shown in FIG. 2B. The control circuitry 20 gen-
erates a control signal 38 applied to a voice coil motor (VCM)
40 which rotates an actuator arm 42 about a pivot in order to
actuate the head 18 to load the head to fly over the disk and to
unload the head and park the head on a ramp.

FIG. 3 illustrates a graph of the change in HMS versus the
park time of the head. As the park time of the head increases,
the delta for the HMS also increases. As illustrated in FIG. 3,
a park time of three hours may result in the HMS being over
1 nm. In example embodiments, the set time constant may be
configured to not exceed three hours, as the HMS will tend to
exceed 1 nm after three hours, which may require a loading
time of roughly thirty minutes or more to shear off the excess
lubricant, as illustrated in FIG. 4(d). In an example situation
where the HDD may be powered down and the head may be
parked, such as a server utilizing the HDD, the HDD can be
configured to power on for the loading the head onto the disk
media after a period of time has elapsed based on the set time
constant, wherein the server or control circuitry of the HDD
can monitor the time period to ensure that the head does not
remain parked for more than three hours. However, depend-
ing on the desired implementation of the HDD, other con-
figurations are also possible. For example, in a Redundant
Array of Independent Disks (RAID) configuration or a tiered
storage configuration wherein the HDD may be utilized only
as a secondary storage with a set or known backup schedule,
a maximum park time of five hours, for example, could also
be employed.

FIGS. 4(a) to 4(f) are a series of graphs illustrating the
decrease in the HMS versus time after initial load, in accor-
dance with an example embodiment. The graphs illustrate the
change in HMS versus time after initial load for a head that
was parked on a ramp for O hrs, 1 hr, 2 hrs, 3 hrs, 5 hrs and 10
hrs, respectively.

In the example of FIG. 4(a) the head is loaded almost
immediately onto the disk (e.g. under one minute) after being
unloaded from the disk and parked on the ramp. As illustrated
in FIG. 4(a), the HMS measurements are constant within a
measurement error (e.g. 0.2 nm). In example embodiments, a
predetermined range can be configured to compensate for
such measurement error, so that the implementations can
determine that the HMS measurements are constant when
they fall within the predetermined range. The predetermined
range can be configured manually, and/or can be derived from
initial HMS measurements taken from loading the head
immediately onto the disk for calibration (e.g., based on the
measurement error), or by other methods depending on the
desired implementation.

For long periods of unload where the head is parked on the
ramp (e.g. 1 hr or more), the resulting increase in HMS may
be up to 1 nm or more from the designated HMS of the disk
drive. The head is therefore loaded until the increased HMS is
reduced to zero, plus or minus a delta for measurement vari-
ance. The delta can be configured based on the design of the
disk drive and the desired implementation.

Asillustrated in FIG. 4(5), parking the head on the ramp for
1 hr or less (e.g. 10-20 minutes) can reduce the increase in
HMS, thereby reducing the time needed for the HMS mea-
surements to become constant. For example, setting the time
period for unloading the head for 10-20 minutes may require
loading the head for only 30 seconds for shearing off the
lubricant. For implementations where time periods of 1 hr or
more are required (e.g. drive design, intended implementa-
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tion of the disk drive, etc.), the time needed to reduce the HMS
measurements may be longer (e.g., several minutes). As illus-
trated in FIGS. 4(c) to 4(f), a longer park time results in a
larger initial difference in HMS, which may necessitate a
longer loading period for the HMS values to become constant
within the predetermined range. For example, as illustrated in
FIG. 4(d), a park time of three hours could require roughly ten
minutes or more to reduce the HMS measurements to the
predetermined range.

FIG. 5 illustrates a flow diagram according to an example
embodiment of the present inventive concept. At 500, the
head ofthe HDD is unloaded from the disk media onto a ramp
for a period of time based on a time constant as explained
above. At 501, the head is loaded onto a disk media of the
HDD after the period of time has elapsed. At 502, HMS is
repeatedly measured until the HMS measurements become
constant within a predetermined range. The measurements
can be conducted, for example by a direct measurement of
HMS from sensors or feedback from control circuitry. For
example, a comparison of a read back signal strength from the
head with a baseline read back signal strength can also be
used to determine the HMS. As the read back signal strength
is decreased, the control circuitry can determine the HMS
based on the decreased read back signal strength due to a
pre-determined correlation between the signal strength and
the HMS. In another example implementation, the read back
signal strength after the heads were loaded for along period of
time (e.g., 30 min or more) can be used as the HMS measure-
ment, without having to determine the actual HMS. In this
example implementation, because the baseline signal
strength is known (e.g., preset in the control circuitry or
predetermined from an example calibration measurement as
described with respect to FIG. 4(a)), the read back signal
strength can be measured and the head can be unloaded until
the read back signal strength falls within a predetermined
range of the baseline read back signal strength.

At 503, the head is unloaded from the disk media when the
HMS measurements are constant within the predetermined
range. At 504, the time constant is updated based on the HMS
measurements and/or one or more environmental conditions.
Various environmental conditions may also affect the lubri-
cant migration. For example, depending on the lubricant,
lower temperatures may affect the viscosity of the lubricant,
thereby requiring more time to shear off the lubricant than in
a room temperature or warmer environment. Therefore, a
temperature sensor may be employed to shorten the time
constant if the temperature falls below a threshold for which
the lubricant may shear oftf more slowly due to the lowered
viscosity of'the lubricant. In another example implementation
where a vibration sensor is employed, the head may not be
loaded immediately until the vibration conditions fall below a
preset threshold to avoid damage to the disk media, even
when the period of time based on the time constant has
elapsed. Other configurations involving environmental con-
ditions may also be employed, depending on the desired
implementation. At 505, the head is kept unloaded on the
ramp for another period of time based on the updated time
constant, wherein the flow repeats from 501.

Inanother example implementation, a predetermined base-
line HMS can also be used for direct comparison with the
measured HMS to determine the time constant. The predeter-
mined baseline HMS can be used with the predetermined
range to ensure that the HMS is within a range of the baseline.
It the measured HMS is compared to the predetermined base-
line HMS to adjust the time constant, there may be a problem
with signal degradation over time. In such implementations,
the control circuitry can be further configured to adjust the
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baseline HMS to account for any signal degradation not
related to lubricant migration over the head (e.g. contamina-
tion or wear in the head/disk interface). Once the measured
HMS is constant over a period of time, the control circuitry
can be configured using this value as the new predetermined
HMS.

Any suitable control circuitry may be employed to imple-
ment the flow diagrams in the example embodiments of the
present invention, such as any suitable integrated circuit or
circuits. For example, the control circuitry may be imple-
mented within a read channel integrated circuit, or in a com-
ponent separate from the read channel, such as a disk control-
ler, or certain actions described above may be performed by a
read channel and others by a disk controller. In one example
embodiment, the read channel and disk controller are imple-
mented as separate integrated circuits, and in an alternative
example embodiment they are fabricated into a single inte-
grated circuit or system on a chip (SOC). In addition, the
control circuitry may include a suitable preamp circuit imple-
mented as a separate integrated circuit, integrated into the
read channel or disk controller circuit, or integrated into an
SOC.

In one example embodiment, the control circuitry com-
prises a microprocessor executing instructions, the instruc-
tions being operable to cause the microprocessor to perform
the actions of the flow diagrams described herein. In some
embodiments, certain actions may be omitted, combined,
and/or performed in a different order than shown here. The
instructions may be stored in any computer-readable
medium. In one example embodiment, they may be stored on
a non-volatile semiconductor memory external to the micro-
processor, or integrated with the microprocessor in a SOC. In
another example embodiment, the instructions are stored on
the disk media and read into a volatile semiconductor
memory when the disk drive is powered on. In yet another
example embodiment, the control circuitry comprises suit-
able logic circuitry, such as state machine circuitry.

What is claimed is:

1. A disk drive comprising:

a disk media;

a head; and

control circuitry comprising a servo control system con-

figured to actuate the head for reduction of lubricant

migration, the control circuitry configured to:

unload the head onto a ramp for a period of time based on
a time constant;

load the head onto the disk after the period of time has
elapsed;

repeatedly measure head-media spacing (HMS) until
HMS measurements become constant within a prede-
termined range; and

unload the head when the HMS measurements become
constant within a predetermined range.

2. The disk drive of claim 1, wherein the control circuitry is
further configured to update the time constant based on a time
taken for the HMS measurements to become constant within
the predetermined range.

3. The disk drive of claim 2, wherein the control circuitry is
configured to unload the head when the HMS measurements
become constant within the predetermined range for another
period of time based on the updated time constant.

4. The disk drive of claim 1, wherein the control circuitry is
configured to measure HMS by comparison of a read back
signal strength from the head with a baseline read back signal
strength.
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5. The disk drive of claim 1, wherein the control circuitry is
configured to update the time constant based on one or more
environmental conditions.

6. The disk drive of claim 1, wherein the period of time is
configured to be less than three hours.

7. The disk drive of claim 1, wherein the control circuitry is
further configured to update a predetermined baseline HMS
after the head is loaded for another period of time and repeat-
edly measure the HMS until the HMS measurements become
constant.

8. The disk drive of claim 7, wherein the another period of
time is at least thirty minutes.

9. A method for mitigating lubricant migration onto a pole
area of a slider in a hard disk drive (HDD), the method
comprising:

unloading a head of the HDD onto a ramp for a period of

time based on a time constant;

loading the head onto a disk media of the HDD after the

period of time has elapsed;

repeatedly measuring head-media spacing (HMS) until

HMS measurements become constant within a predeter-
mined range; and

unloading the head when the HMS measurements become

constant within the predetermined range.

10. The method of claim 9, further comprising updating the
time constant based on a time taken for the HMS measure-
ments to become constant within the predetermined range.

11. The method of claim 10, wherein the unloading the
head when the HMS measurements become constant within
the predetermined range is for another period of time based on
the updated time constant.

12. The method of claim 9, wherein the measuring HMS
comprises comparing a read back signal strength from the
head with a baseline read back signal strength.

13. The method of claim 9, further comprising updating the
time constant based on one or more environmental condi-
tions.

14. The method of claim 9, wherein the period of time is
configured to be less than three hours.

15. The method of claim 9, further comprising updating a
predetermined baseline HMS after the head is loaded for
another period of time and repeatedly measuring the HMS
until the HMS measurements become constant.

16. The method of claim 15, wherein the another period of
time is at least thirty minutes.

17. A control circuitry configured to actuate a head of a
hard disk drive (HDD) for reduction of lubricant migration,
the control circuitry configured to:

unload the head of the hard disk drive (HDD) onto a ramp

for a period of time based on a time constant;

load the head onto a disk media of the HDD after the period

of time has elapsed;

repeatedly measure head-media spacing (HMS) until HMS

measurements become constant within a predetermined
range; and

unload the head when the HMS measurements become

constant within a predetermined range.

18. The control circuitry of claim 17, wherein the control
circuitry is further configured to update the time constant
based on a time taken for the HMS measurements to become
constant within the predetermined range.

19. The control circuitry of claim 18, wherein the control
circuitry is configured to unload the head when the HMS
measurements become constant within the predetermined
range for another period of time based on the updated time
constant.
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20. The control circuitry of claim 17, wherein the control
circuitry is configured to measure HMS by comparison of a
read back signal strength from the head with a baseline read
back signal strength.

21. The control circuitry of claim 17, wherein the control 5
circuitry is configured to update the time constant based on
one or more environmental conditions.

22. The control circuitry of claim 17, wherein the period of
time is configured to be less than three hours.

23. The control circuitry of claim 17, wherein the control 10
circuitry is further configured to update a predetermined
baseline HMS after the head is loaded for another period of
time, and repeatedly measure the HMS until the HMS mea-
surements become constant.

24. The control circuitry of claim 23, wherein the another 15
period of time is at least thirty minutes.
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